The Association of Mitochondrial Potential and Copy Number with Pig Oocyte Maturation and Developmental Potential
نویسندگان
چکیده
ATP is critical for oocyte maturation, fertilization, and subsequent embryo development. Both mitochondrial membrane potential and copy number expand during oocyte maturation. In order to differentiate the roles of mitochondrial metabolic activity and mtDNA copy number during oocyte maturation, we used two inhibitors, FCCP (carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone) and ddC (2'3-dideoxycytidine), to deplete the mitochondrial membrane potential (Δφm) and mitochondrial copy number, respectively. FCCP (2000 nM) reduced ATP production by affecting mitochondrial Δφm, decreased the mRNA expression of Bmp15 (bone morphogenetic protein 15), and shortened the poly(A) tails of Bmp15, Gdf9 (growth differentiation factor 9), and Cyclin B1 transcripts. FCCP (200 and 2000 nM) also affected p34(cdc2) kinase activity. By contrast, ddC did not alter ATP production. Instead, ddC significantly decreased mtDNA copy number (P < 0.05). FCCP (200 and 2000 nM) also decreased extrusion of the first polar body, whereas ddC at all concentrations did not affect the ability of immature oocytes to reach metaphase II. Both FCCP (200 and 2000 nM) and ddC (200 and 2000 µM) reduced parthenogenetic blastocyst formation compared with untreated oocytes. However, these inhibitors did not affect total cell number and apoptosis. These findings suggest that mitochondrial metabolic activity is critical for oocyte maturation and that both mitochondrial metabolic activity and replication contribute to the developmental competence of porcine oocytes.
منابع مشابه
Mitoguardin-1 and -2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions.
Mitochondrial dynamics change mitochondrial morphological features and numbers as a part of adaptive cellular metabolism, which is vital for most eukaryotic cells and organisms. A disease or even death of an animal can occur if these dynamics are disrupted. Using large-scale genetic screening in fruit flies, we previously found the gene mitoguardin (Miga), which encodes a mitochondrial outer-me...
متن کاملO-11: Diverse Effects of Polyunsaturated Fatty Acids on Oocyte Maturation and Development In vitro
Background: Polyunsaturated fatty acids (PUFAs) have been shown to influence fertility and endocrinology of reproduction and metabolic activity in many species. In dairy cows, we and others have shown changes in steroid and metabolic hormones and prostaglandins leading to alteration of ovarian activity and uterine function. These can influence fertility by changes in folliculogenesis cyclicity ...
متن کاملRestoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency
An increasing number of women fail to achieve pregnancy due to either failed fertilization or embryo arrest during preimplantation development. This often results from decreased oocyte quality. Indeed, reduced mitochondrial DNA copy number (mitochondrial DNA deficiency) may disrupt oocyte quality in some women. To overcome mitochondrial DNA deficiency, whilst maintaining genetic identity, we su...
متن کاملO-29: Differences in The Transcriptional Profiles of Human Cumulus Cells Isolated From MI and MII Oocytes of Patients with Polycystic Ovary Syndrome
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. The abnormalities of endocrine and intra-ovarian paracrine interactions may change the microenvironment for oocyte development during the folliculogenesis process and reduce the developmental competence of oocytes in PCOS patients who are suffering from anovulatory infertility and pregnancy loss....
متن کاملO-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte
Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...
متن کامل